Abnormalities in the enamel in bmp2-deficient mice.

نویسندگان

  • Junsheng Feng
  • Guobin Yang
  • Guohua Yuan
  • Jelica Gluhak-Heinrich
  • Wuchen Yang
  • Lynn Wang
  • Zhi Chen
  • Jennifer Schulze McDaniel
  • Kevin J Donly
  • Stephen E Harris
  • Mary Macdougall
  • Shuo Chen
چکیده

Tooth development is regulated by epithelial-mesenchymal interactions and their reciprocal molecular signaling. Bone morphogenetic protein 2 (Bmp2) is essential for tooth formation. However, the role of Bmp2 during enamel formation remains unknown in vivo. In this study, the role of Bmp2 in the regulation of postnatal enamel formation was investigated via the conditional ablation of Bmp2 in enamel using the (Osx-Cre) mouse. Bmp2 gene ablation was confirmed by PCR analysis in Osx-Cre, Bmp2(flox/flox) mice. Bmp2-null mice displayed a severe and profound tooth phenotype with asymmetric and open forked incisors. Microradiographs revealed broken incisor tips and dental pulp chamber exposure. The enamel layer of incisors and molars was thin with hypomineralization. Scanning electron microscopy analysis showed that the enamel surface was rough with chipping and the enamel lacked a typical prismatic architecture. These results demonstrate that Bmp2 is essential for enamel formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

E-Cadherin Can Replace N-Cadherin during Secretory-Stage Enamel Development

BACKGROUND N-cadherin is a cell-cell adhesion molecule and deletion of N-cadherin in mice is embryonic lethal. During the secretory stage of enamel development, E-cadherin is down-regulated and N-cadherin is specifically up-regulated in ameloblasts when groups of ameloblasts slide by one another to form the rodent decussating enamel rod pattern. Since N-cadherin promotes cell migration, we aske...

متن کامل

BMP2-induced gene profiling in dental epithelial cell line.

Tooth development is regulated by epithelial-mesenchymal interactions and their reciprocal molecular signaling. Bone morphogenetic protein 2 (BMP2) is known as one of the inducers for tooth development. To analyze the molecular mechanisms of BMP2 on ameloblast differentiation (amelogenesis), we performed microarray analyses using rat dental epithelial cell line, HAT-7. After confirming that BMP...

متن کامل

Defective enamel and bone development in sodium-dependent citrate transporter (NaCT) Slc13a5 deficient mice

There has been growing recognition of the essential roles of citrate in biomechanical properties of mineralized tissues, including teeth and bone. However, the sources of citrate in these tissues have not been well defined, and the contribution of citrate to the regulation of odontogenesis and osteogenesis has not been examined. Here, tooth and bone phenotypes were examined in sodium-dependent ...

متن کامل

Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development.

To address the function of bone morphogenetic protein-2 (BMP2) in mammalian development, mice with a targeted deletion of the Bmp2 mature region were generated using embryonic stem cell technology. This mutation caused embryonic lethality when homozygous. Mutant embryos failed to close the proamniotic canal, which caused the malformation of the amnion/chorion. BMP2-deficient embryos also exhibi...

متن کامل

Abrogation of epithelial BMP2 and BMP4 causes Amelogenesis Imperfecta by reducing MMP20 and KLK4 expression

Amelogenesis Imperfecta (AI) can be caused by the deficiencies of enamel matrix proteins, molecules responsible for the transportation and secretion of enamel matrix components, and proteases processing enamel matrix proteins. In the present study, we discovered the double deletion of bone morphogenetic protein 2 (Bmp2) and bone morphogenetic protein 4 (Bmp4) in the dental epithelium by K14-cre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cells, tissues, organs

دوره 194 2-4  شماره 

صفحات  -

تاریخ انتشار 2011